Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 593(7858): 233-237, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33981052

RESUMO

Atmospheric acidity is increasingly determined by carbon dioxide and organic acids1-3. Among the latter, formic acid facilitates the nucleation of cloud droplets4 and contributes to the acidity of clouds and rainwater1,5. At present, chemistry-climate models greatly underestimate the atmospheric burden of formic acid, because key processes related to its sources and sinks remain poorly understood2,6-9. Here we present atmospheric chamber experiments that show that formaldehyde is efficiently converted to gaseous formic acid via a multiphase pathway that involves its hydrated form, methanediol. In warm cloud droplets, methanediol undergoes fast outgassing but slow dehydration. Using a chemistry-climate model, we estimate that the gas-phase oxidation of methanediol produces up to four times more formic acid than all other known chemical sources combined. Our findings reconcile model predictions and measurements of formic acid abundance. The additional formic acid burden increases atmospheric acidity by reducing the pH of clouds and rainwater by up to 0.3. The diol mechanism presented here probably applies to other aldehydes and may help to explain the high atmospheric levels of other organic acids that affect aerosol growth and cloud evolution.

2.
Phys Chem Chem Phys ; 19(47): 31599-31612, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29182168

RESUMO

Stabilized Criegee intermediates (SCI) are reactive oxygenated species formed in the ozonolysis of hydrocarbons. Their chemistry could influence the oxidative capacity of the atmosphere by affecting the HOx and NOx cycles, or by the formation of low-volatility oxygenates enhancing atmospheric aerosols known to have an important impact on climate. The concentration of SCI in the atmosphere has hitherto not been determined reliably, and very little is known about their speciation. Here we show that the concentration of biogenic SCI is strongly limited by their unimolecular decay, based on extensive theory-based structure-activity relationships (SARs) for the reaction rates for decomposition. Reaction with water vapor, H2O and (H2O)2 molecules, is the second most important loss process; SARs are also proposed for these reactions. For SCI derived from the most common biogenic VOCs, we find that unimolecular decay is responsible for just over half of the loss, with reaction with water vapor the main remaining loss process. Reactions with SO2, NO2, or acids have negligible impact on the atmospheric SCI concentration. The ambient SCI concentrations are further characterized by analysis of field data with speciated hydrocarbon information, and by implementation of the chemistry in a global chemistry model. The results show a highly complex SCI speciation, with an atmospheric peak SCI concentrations below 1 × 105 molecule cm-3, and annual average SCI concentrations less than 7 × 103 molecule cm-3. We find that SCI have only a negligible impact on the global gas phase H2SO4 formation or removal of oxygenates, though some contribution around the equatorial belt, and in select regions, cannot be excluded.

3.
Nature ; 452(7188): 737-40, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18401407

RESUMO

Terrestrial vegetation, especially tropical rain forest, releases vast quantities of volatile organic compounds (VOCs) to the atmosphere, which are removed by oxidation reactions and deposition of reaction products. The oxidation is mainly initiated by hydroxyl radicals (OH), primarily formed through the photodissociation of ozone. Previously it was thought that, in unpolluted air, biogenic VOCs deplete OH and reduce the atmospheric oxidation capacity. Conversely, in polluted air VOC oxidation leads to noxious oxidant build-up by the catalytic action of nitrogen oxides (NO(x) = NO + NO2). Here we report aircraft measurements of atmospheric trace gases performed over the pristine Amazon forest. Our data reveal unexpectedly high OH concentrations. We propose that natural VOC oxidation, notably of isoprene, recycles OH efficiently in low-NO(x) air through reactions of organic peroxy radicals. Computations with an atmospheric chemistry model and the results of laboratory experiments suggest that an OH recycling efficiency of 40-80 per cent in isoprene oxidation may be able to explain the high OH levels we observed in the field. Although further laboratory studies are necessary to explore the chemical mechanism responsible for OH recycling in more detail, our results demonstrate that the biosphere maintains a remarkable balance with the atmospheric environment.


Assuntos
Atmosfera/química , Árvores/metabolismo , Clima Tropical , Animais , Oceano Atlântico , Butadienos/metabolismo , Guiana Francesa , Guiana , Hemiterpenos/metabolismo , Radical Hidroxila/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Ozônio/análise , Pentanos/metabolismo , Suriname
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...